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Abstract
With the rapid growth of computing powers and recent advances in deep learning, we have witnessed impressive
demonstrations of novel robot capabilities in research settings. Nonetheless, these learning systems exhibit brittle
generalization and require excessive training data for practical tasks. To harness the capabilities of state-of-the-art
robot learning models while embracing their imperfections, we present Sirius, a principled framework for humans and
robots to collaborate through a division of work. In this framework, partially autonomous robots are tasked with handling
a major portion of decision-making where they work reliably; meanwhile, human operators monitor the process and
intervene in challenging situations. Such a human-robot team ensures safe deployments in complex tasks. Further, we
introduce a new learning algorithm to improve the policy’s performance on the data collected from the task executions.
The core idea is re-weighing training samples with approximated human trust and optimizing the policies with weighted
behavioral cloning. We evaluate Sirius in simulation and on real hardware, showing that Sirius consistently outperforms
baselines over a collection of contact-rich manipulation tasks, achieving an 8% boost in simulation and 27% on real
hardware than the state-of-the-art methods in policy success rate, with twice faster convergence and 85% memory size
reduction. Videos and more details are available at https://ut-austin-rpl.github.io/sirius/
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1 Introduction

Recent years have witnessed great strides in deep learning
techniques for robotics. In contrast to the traditional
form of robot automation, which heavily relies on human
engineering, these data-driven approaches show great
promise in building robot autonomy that is difficult to
design manually. While learning-powered robotics systems
have achieved impressive demonstrations in research
settings (Andrychowicz et al. 2018; Kalashnikov et al.
2018; Lee et al. 2020), the state-of-the-art robot learning
algorithms still fall short of generalization and robustness for
widespread deployment in real-world tasks. The dichotomy
between rapid research progress and the absence of real-
world application stems from the lack of performance
guarantees in today’s learning systems, especially when
using black-box neural networks. It remains opaque to the
potential practitioners of these learning systems: how often
they fail, in what circumstances the failures occur, and how
they can be continually enhanced to address them.

To harness the power of modern robot learning algorithms
while embracing their imperfections, a burgeoning body
of research has investigated new mechanisms to enable
effective human-robot collaborations. Specifically, shared
autonomy methods (Javdani et al. 2015; Reddy et al. 2018)
aim at combining human input and semi-autonomous robot
control to achieve a common task goal. These methods
typically use a pre-built robot controller rather than seeking
to improve robot autonomy over time. Meanwhile, recent
advances in interactive imitation learning (Kelly et al. 2019;
Mandlekar et al. 2020c; Ross et al. 2011; Celemin et al.

2022) have aimed to learn policies from human feedback
in the learning loop. Although these learning algorithms can
improve the overall efficacy of autonomous policies, these
policies still fail to meet the performance requirements for
real-world deployment.

This work aims at developing a human-in-the-loop
learning framework for human-robot collaboration and
continual policy learning in deployed environments. We
expect our framework to satisfy two key requirements:
1) it ensures task execution to be consistently successful
through human-robot teaming, and 2) it allows the
learning models to improve continually, such that human
workload is reduced as the level of robot autonomy
increases. To build such a framework, this idea of robot
learning on the job resembles the Continuous Integration,
Continuous Deployment (CI/CD) principles in software
engineering (Shahin et al. 2017). Realizing this idea for
learning-based manipulation invites fundamental challenges.

The foremost challenge is developing the infrastructure
for human-robot collaborative manipulation. We develop
a system that allows a human operator to monitor and
intervene the robot’s policy execution (see Fig. 1). The
human can take over control when necessary and handle
challenging situations to ensure safe and reliable task
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Figure 1. Overview of Sirius, our human-in-the-loop
learning and deployment framework. Sirius enables a human
and a robot to collaborate on manipulation tasks through shared
control. The human monitors the robot’s autonomous execution
and intervenes to provide corrections through teleoperation.
Data from deployments will be used by our algorithm to improve
the robot’s policy in consecutive rounds of policy learning.

execution. Meanwhile, human interventions implicitly reveal
the task structure and the level of human trust in the robot.
As recent work (Kelly et al. 2019; Mandlekar et al. 2020c;
Hoque et al. 2021) indicates, human interventions inform
when the human lacks trust in the robot, where the risk-
sensitive task states are, and how to traverse these states.
We can thus take advantage of the occurrences of human
interventions during deployments as informative signals for
policy learning.

The subsequent challenge is updating policies on an ever-
growing dataset of shifting distributions. As our framework
runs over time, the policy would adapt its behaviors through
learning, and the human would adjust their intervention
patterns accordingly. Deployment data from human-robot
teams can be multimodal and suboptimal. Learning from
such deployment data requires us to selectively use them
for policy updates. We want the robot to learn from good
behaviors to reinforce them and also to recover from
mistakes and deal with novel situations. At the same time,
we want to prevent the robot from copying bad actions that
would lead to failure. Our key insight is that we can assess
the importance of varying training data based on human
interventions for policy learning.

To this end, we develop a simple yet effective
learning algorithm that uses the occurrences of human
intervention to re-weigh training data. We consider the
robot rollouts right before an intervention as “low-quality”
(as the human believes the robot is about to fail) and
both human demonstrations and interventions as “high-
quality” for policy training. We label training samples with
different weights and train policies on these samples using
weighted behavioral cloning, the state-of-the-art algorithm
for imitation learning (Sasaki and Yamashina 2021; Zolna
et al. 2020; Xu et al. 2022) and offline reinforcement
learning (Wang et al. 2020; Nair et al. 2021; Kostrikov et al.
2021). This supervised learning algorithm lends itself to the

efficiency and stability of policy optimization on our large-
scale and growing dataset.

Furthermore, deploying our system in long-term missions
leads to two practical considerations: 1) it incurs a heavy
burden of memory storage to store all past experiences
over a long duration, and 2) a large number of similar
experiences may inundate the small subset of truly valuable
data for policy training. We thus examine different memory
management strategies, aiming at adaptively adding and
removing data samples from the memory storage of fixed
size. Our results show that even with 15% of the full
memory size, we can retain the same level of performance or
achieve even better performance than keeping all data, and
moreover enables three times faster convergence for rapid
model updates between consecutive rounds.

We name our framework Sirius, the star symbolizing
our human-robot team with its binary star system. We
evaluate Sirius in two simulated and two real-world tasks
requiring contact-rich manipulation with precise motor
skills. Compared to the state-of-the-art methods of learning
from offline data (Nair et al. 2021; Kostrikov et al.
2021; Mandlekar et al. 2021a) and interactive imitation
learning (Mandlekar et al. 2020c), Sirius achieves higher
policy performance and reduced human workload. Sirius
reports an 8% boost in policy performance in simulation and
27% on real hardware over the state-of-the-art methods.

2 Related Work
Human-in-the-loop Learning. A human-in-the-loop learn-
ing agent utilizes interactive human feedback signals to
improve its performance (Zhang et al. 2019; Cruz and
Igarashi 2020; Cui et al. 2021). Human feedback can serve
as a rich source of supervision, as humans often have a
priori domain information and can interactively guide the
agent with respect to its learning progress. Many forms of
human feedback exist, such as interventions (Kelly et al.
2019; Spencer et al. 2020; Mandlekar et al. 2020c), prefer-
ences (Christiano et al. 2017; Bıyık et al. 2022; Lee et al.
2021; Wang et al. 2022), rankings (Brown et al. 2019),
scalar-valued feedback (MacGlashan et al. 2017; Warnell
et al. 2018), and human gaze (Zhang et al. 2020). These feed-
back forms can be integrated into the learning loop through
learning techniques such as policy shaping (Knox and Stone
2009; Griffith et al. 2013) and reward modeling (Daniel
et al. 2014; Leike et al. 2018), enabling model updates from
asynchronous policy iteration loops (Chisari et al. 2021).

Within the context of robot manipulation, one approach
is to incorporate human interventions in imitation learning
algorithms (Kelly et al. 2019; Spencer et al. 2020; Mandlekar
et al. 2020c; Dass et al. 2022). Another approach is
to employ deep reinforcement learning algorithms with
learned rewards, either from preferences (Lee et al. 2021;
Wang et al. 2022) or reward sketching (Cabi et al. 2019).
While these methods have demonstrated higher performance
compared to those without humans in the loop, they require
a large amount of supervision from humans and also fail
to incorporate human control feedback in deployment into
the learning loop again to improve model performance. In
contrast, we specifically consider the above scenarios which
are critical to real-world robotic systems.
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Shared Autonomy. Human-robot collaborative control is
often necessary for real-world tasks when we do not have
full robot autonomy while full human teleoperation control
is burdensome. In shared autonomy (Dragan and Srinivasa
2013; Javdani et al. 2015; Gopinath et al. 2017; Reddy et al.
2018), the control of a system is shared by a human and a
robot to accomplish a common goal (Tan et al. 2021). The
existing literature on shared autonomy focuses on efficient
collaborative control from human intent prediction (Dragan
and Srinivasa 2012; Muelling et al. 2015; Perez-D’Arpino
and Shah 2015). However, they do not attempt to learn
from human intervention feedback, so there is no policy
improvement. We examine a context similar to that of shared
autonomy where a human is involved during the actual
deployment of the robot system; however, we also put human
control in the feedback loop and use them to improve the
learning itself.

Learning from Offline Data. An alternative to the human-
in-the-loop paradigm is to learn from fixed robot datasets
via imitation learning (Pomerleau 1989; Zhang et al. 2018;
Mandlekar et al. 2020b; Florence et al. 2021) or offline
reinforcement learning (offline RL) (Levine et al. 2020;
Fujimoto et al. 2019; Kumar et al. 2020; Kidambi et al. 2020;
Yu et al. 2020, 2021; Mandlekar et al. 2020a; Kostrikov
et al. 2021). Offline RL algorithms, particularly, have
demonstrated promise when trained on large diverse datasets
with suboptimal behaviors (Singh et al. 2020; Kumar et al.
2022; Ajay et al. 2021). Among a number of different
methods, advantage-weighed regression methods (Wang
et al. 2020; Nair et al. 2021; Kostrikov et al. 2021) have
recently emerged as a popular approach to offline RL.
These methods use a weighted behavior cloning objective
to learn the policy, using learned advantage estimates as
the weight. In this work, we also use weighted behavior
cloning; however, we explicitly leverage human intervention
signals from our online human-in-the-loop setting to obtain
weights rather than using task rewards to learn advantage-
based weights. We show that this leads to superior empirical
performance for our manipulation tasks.

3 Background and Overview

3.1 Problem Formulation
We formulate a robot manipulation task as a Markov
Decision ProcessM = (S,A,R,P, p0, γ) representing the
state space, action space, reward function, transition
probability, initial state distribution, and discount factor.
In this work, we adopt an intervention-based learning
framework in which the human can choose to intervene and
take control of the robot. Given the current state st ∈ S, the
robot action aRt ∈ A is drawn from the policy πR (· | st),
and the human can override this action with a human action
aHt ∈ A. The policy π for the human-robot team can thus be
formulated as:

π(· | st) = IH(st)πH(· | st) + (1− IH(st))πR(· | st),

where IH is a binary indicator function of human
interventions and πH is the implicit human policy.
Our learning objective is two-fold: 1) we want to
improve the level of robot autonomy by finding the
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Figure 2. Illustration of the workflow in Sirius. Robot
deployment and policy update co-occur in two parallel threads.
Deployment data are passed to policy training, while a newly
trained policy is deployed to the target environment for task
execution.

autonomous policy πR that maximizes the cumulative
rewards EπR

[
∑∞

t=0 γ
tr (st, at, st+1)], and 2) we want to

minimize the human’s workload in the system, i.e., the
expectation of interventions Eπ[IH(st)] under the state
distribution induced by the team policy π.

3.2 Weighted Behavioral Cloning Methods
We aim to learn a robot policy πR with the deployment
data to enhance robot autonomy and reduce human costs
in human-robot collaboration. Weighted Behavioral Cloning
(BC) has recently become one promising approach to
learning policies from multimodal and suboptimal data. In
standard BC methods, we train a model to mimic the action
for each state in the dataset. The objective is to learn a policy
πR parameterized by θ that maximizes the log-likelihood of
actions a conditioned on the states s:

θ∗ = argmax
θ

E
(s,a)∼D

[log πθ(a | s)] , (1)

where (s, a) are samples from the dataset D. For weighted
BC, the log-likelihood term of each (s, a) pair is scaled by a
weight function w(s, a), which assigns different importance
scores to different samples:

θ∗ = argmax
θ

E
(s,a)∼D

[w(s, a) log πθ(a | s)] . (2)

The weighted BC framework lays the foundation of
several state-of-the-art methods for offline reinforcement
learning (RL) (Nair et al. 2021; Kostrikov et al. 2021;
Wang et al. 2020). Different weight assignments differentiate
high-quality samples from low-quality ones, such that the
algorithm prioritizes high-quality samples for learning. In
particular, advantage-based offline RL algorithms calculate
weights as w(s, a) = f(Qπ(s, a)), where f(·) is a non-
negative scalar function related to the learned advantage
estimates Aπ(s, a). High-advantage samples indicate that
their actions likely contribute to higher future returns and,
therefore, should be weighted more. Through the sample-
weighting scheme, these methods filter out low-advantage
samples and focus on learning from the higher-quality
ones in the dataset. Nonetheless, effectively learning value
estimates can be challenging in practice, especially when
the dataset does not cover a sufficiently wide distribution
of states and actions—a challenge highlighted by prior
work (Gulcehre et al. 2020; Fu et al. 2020). In the
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deployment setting, the data only constitute successful
trajectories that complete the task eventually. Empirically,
we find in Section 5 that the nature of our deployment data
makes today’s offline RL methods struggle to learn values.

In contrast to the value learning framework, some prior
works (Mandlekar et al. 2020c; Gandhi et al. 2022a; Chisari
et al. 2021) have developed weighted BC approaches that are
specialized for the human-in-the-loop setting. In particular,
Mandlekar et al. (2020c) proposes Intervention-weighted
Regression (IWR) which designs weights based on whether
a sample is a human intervention. Inspired by these prior
works, we introduce a simple yet practical weighting scheme
that harnesses the unique properties of deployment data to
learn performant agents. We elaborate on our weighting
scheme in the following section.

4 Sirius: Human-in-the-loop Learning and
Deployment

We present Sirius, our human-in-the-loop framework that
learns and deploys continually improving policies from
human and robot deployment data. First, we define the
human-in-the-loop deployment setting and give an overview
of our system design. Next, we describe our weighting
scheme, which can learn effective policies from mixed,
multi-modal data throughout deployment. Finally, we
introduce memory management strategies that reduce the
computational complexities of policy learning and improve
the efficiency of the system.

4.1 Human-in-the-loop Deployment
Framework

Our human-in-the-loop system aims to constantly learn from
the deployment experience and human corrective feedback
so as to obtain a high-performing robot policy and reduce
human workload over time. It consists of two components
that happen simultaneously: Robot Deployment and Policy
Update. In Robot Deployment (top thread in Fig. 2) , the
robot performs task executions with human monitoring; in
Policy Update (bottom thread), the system improves the
policy with the deployment data for the next round of task
execution.

The system starts with an initial policy in the
warm-up phase, where we bootstrap a robot policy π1

trained on a small number of human demonstrations.
Initially, the memory buffer comprises a set of human
demonstration trajectories D0 = {τj}, where each trajectory
τj = {st, at, rt, ct = demo} consists of the states, actions,
task rewards, and the data class type flag ct indicating
whether these trajectories are human demonstrations.

Upon training the initial policy π1, we deploy the
robot to perform the task, and in the process, we collect
a set of trajectories to improve the policy. A human
operator who continuously monitors the robot’s execution
will intervene based on whether the robot has performed
or will perform suboptimal behaviors. Note that we adapt
human-gated control (Kelly et al. 2019) rather than robot-
gated control (Hoque et al. 2021) to guarantee task execution
success and trustworthiness of the system for real-world
deployment. Through this process, we obtain a new dataset

D′ of trajectories τj = {st, at, rt, ct}, where ct either
indicates the transition is a robot action (ct = robot) or a
human intervention (ct = intv). We append this data to the
existing memory buffer collected so far D1 ← D0 ∪ D′, and
train a new policy π2 on this new dataset.

In subsequent rounds, we deploy the robot to collect new
data while simultaneously updating the policy. We define
“Round” as the interval for policy update and deployment:
It consists of the completion of training for one policy, and at
the same time, the collection of one set of deployment data.
In Round i, we train policy πi using all previously collected
data. Maintaining the previous rounds of collected data
allows us to retain a diverse coverage of the state distribution,
which has the potential benefit of regularizing the policy and
keeping the policy robust (Mandlekar et al. 2018; Hoque
et al. 2021). Meanwhile, the robot is continuously being
deployed using the current latest policy πi−1, and gathered
deployment data D′. At the end of round i we append this
data to the existing memory buffer collected so far Di ←
Di−1 ∪ D′ and train a new policy πi+1 on this aggregated
dataset.

Our system aggregates data from deployment environ-
ments over long-term deployments. This presents a unique
set of challenges: first, the generated data comes from mixed
distributions consisting of robot policy actions, human
interventions, and human demonstrations; also, the system
produces data that is constantly growing in size, imposing
memory burden and computational inefficiency for learning
algorithms. We address these challenges in the following
sections.

4.2 Human-in-the-loop Policy Learning
We present a simple yet effective learning method that takes
advantage of the unique characteristics of deployment data
to learn effective policies. We have a critical insight that
human interventions provide informative signals of human
trust and human judgement of the robot executions, which
we will use to guide the design of our algorithm. The core
idea of our approach is to harness the structure of the human
correction feedback to re-weigh training samples based on an
approximate quality score. With these weighted samples, we
train the policy with the weighted behavioral cloning method
to learn the policy on mixed-quality data. Our approach is
motivated by two insights on how the human intervention
structure could be used.

Our first intuition is that human intervention samples
are highly important samples and should be prioritized in
learning. Human-operated samples are expensive to obtain
and should be optimized in general, but human intervention
occurs in situations where the robot is unable to complete the
task and requires help. These are risk-sensitive task states, so
data in these regions are highly valuable. Therefore, these
state-action pairs should be ranked high by the weighting
function, and we should upweight the human intervention
samples such that these samples will positively influence
learning more.

Moreover, we should not only make use of what human
samples to use, but also when the human samples take place.
We make the critical observation that when the robot operates
autonomously, it usually performs reasonable behaviors.
But when it demands interventions, it is when the robot
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Algorithm 1 Human-in-the-loop Learning at Deployment

Notations
L: memory buffer maximum fixed size
X: maximum deployment rounds
M : number of initial human demonstration trajectories
K: number of rollout episodes in each deployment round
b: batch size
n: number of gradient steps in each learning round
α: policy learning rate

� warmstart phase
Collect M human demonstrations τ1, . . . , τM
D0 ← {τ1, . . . , τM}
Initialize BC policy πθ

1 :
θ∗ = argmaxθ E(s,a)∼D0

[
log πθ

1(a | s)
]

� initial deployment data
D1 ← DEPLOYMENT(πθ

1 , D0)

� deployment-learning loop
for i← 1 to X do

Run in parallel:
Di+1 ←DEPLOYMENT(πθ

i , Di)
πθ
i+1 ←LEARNING(Di)

� deployment thread
function DEPLOYMENT(πθ, D)

Collect rollout episodes τ1, . . . , τK ∼ pπθ
(τ)

D+ ← D ∪ {τ1, . . . , τK}
if |D+| > L then

Discard trajectories in D+ s.t. |D+| ≤ L
with a memory management strategy (in 4.3)

return D+

� learning thread
function LEARNING(D)

Initialize πθ

for each class c do
Dc ← {(s, a, c′) ∈ D | c′ = c}
P (c)← |Dc|/|D|
Obtain P ∗(c) (see 4.4)

for n gradient steps do
Sample mini-batch

(
si, ai, ci

)b
i=1
∼ D

Compute w(si, ai, ci)← P∗(ci)
P (ci) for the mini-batch

Lπ(θ) = − 1
b

∑
i

[
w(si, ai, ci) · log πθ(a

i | si)
]

θ ← θ − α∇θLπ(θ)
return πθ
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Figure 3. Overview of our human-in-the-loop learning
model. We maintain an ever-growing database of diverse
experiences spanning four categories: human demonstrations,
autonomous robot data, human interventions, and transitions
preceding interventions which we call pre-interventions. We set
weights according to these four categories, with a high weight
given to interventions over other categories. We use these
weighted samples to continually learn vision-based
manipulation policies during deployment.

has made mistakes or has performed suboptimal behaviors.
Therefore, human interventions implicitly signify human
value judgment of the robot behavior—the samples before

human interventions are less desirable and of lower quality.
We aim to minimize their impact on learning.

With these insights, we devise a weighting scheme
according to intervention-guided data class types. Recall
that each sample (s, a, r, c) in our dataset contains a
data class type c, indicating whether the sample denotes
a human demonstration action, robot action, or human
intervention action. To incorporate the timing of human
interventions, we distinguish and penalize the samples taken
prior to each human intervention. We define the segment
preceding each human intervention as a separate class, pre-
intervention (preintv) (see Fig. 3). This classification is
based on the implicit human evaluation from the human
partner, thresholding the robot samples into either normal
robot samples or suboptimal preintv samples. Overall,
this yields four class types c ∈ {demo, intv, robot,
preintv}. We choose to keep the robot action data
and learn from them because adding robot action data to
the training set regularizes the training process, as shown
by Mandlekar et al. (2020c). Removing the robot action
data reduces the method to be HG-Dagger (Kelly et al.
2019), which is known to perform worse in several findings
(Mandlekar et al. 2018; Hoque et al. 2021; Li et al. 2022).

We derive the weight for each individual sample according
to its corresponding class type c. Suppose the dataset D has
total number of samples N , and nc is the number of samples
that is class c. We use Dc to represent the collection of
samples of class c in D. The original class distribution is
P (c) = nc/N for class c, and the unweighted BC objective
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under this distribution is:

argmax
θ

E
(s,a)∼D

[log πθ(a | s)]

= argmax
θ

E
P (c)

E
(s,a)∼Dc

[log πθ(a | s)] .
(3)

In a long-term deployment setting, most data will be robot
actions, and human interventions usually constitute a small
ratio of the dataset samples since interventions only happen
at critical regions in a trajectory; the pre-intervention samples
constitute a small but non-negligible proportion which can
have detrimental effects (see Fig. 3, left pie chart). We will
now change the class distribution to a new distribution P ∗(c),
in which we increase the ratio of human intervention samples
and decrease the ratio of the pre-intervention samples (see
Fig. 3, right pie chart). Under this new distribution, the
weight w(s, a, c) of the training samples in each individual
class c can be equivalently set as w(s, a, c) = P ∗(c)/P (c)
by the rule of importance sampling. We outline the details
of our specific distribution P ∗(c) in Sec. 4.4. This way, we
obtain the sample weights for weighted BC, leveraging the
inherent structure of human-robot team data.

4.3 Memory Management
As the deployment continues and the dataset increases, large
data slows down training convergence and takes up excessive
memory space. We hypothesize that forgetting (routinely
discarding samples from memory) helps prioritize important
and useful experiences for learning, speeding up convergence
and even further improving policy. Moreover, the right kind
of forgetting matters, since we want to preserve the data that
is most beneficial to learning. Therefore, we would like to
investigate the following question—with limited data storage
and a never-ending deployment data flow, how do we absorb
the most useful data and preserve more valuable information
for learning?

We assume that we have a fixed-size memory buffer that
replaces existing samples with new ones when full. We
consider five strategies for managing the memory buffer
of deployment data. Each strategy tests out a different
hypothesis listed below:

1. LFI (Least-Frequently-Intervened): first reject sam-
ples from trajectories with the least interventions.
(Preserving the most human intervened trajectories
keeps the most valuable human and critical state
examples, which helps learning the most.)

2. MFI (Most-Frequently-Intervened): first reject sam-
ples from trajectories with the most interventions.
(Successful, unintervened robot trajectories yield
higher quality data for learning compared to those that
require intervention.)

3. FIFO (First-In-First-Out): reject samples in the order
that they were added to the buffer.
(More recent data from a higher performing policy are
higher quality data for learning.)

4. FILO (First-In-Last-Out): reject the most recently
added samples first.
(Initial data from a worse performing policy have
greater state coverage and data diversity for learning.)

LSTM

Spatial 
Softmax

Spatial 
Softmax

ResNet-18
Encoder

ResNet-18
Encoder

Workspace 
Image

Proprioceptive 
State

Motor 
Action

G
M

MEye-in-hand 
Image

Figure 4. Policy Architecture. Our vision-based policy uses
BC-RNN as our policy backbone. Our inputs are workspace
camera image and eye-in-hand camera image, as well as robot
proprioceptive states.

5. Uniform: reject samples uniformly at random.
(Uniformly selecting trajectories can yield a balanced
mix of diverse samples, aiding in the learning process.)

With the intervention-guided weighting scheme for policy
update and memory management strategies, we present
the overall workflow of human-in-the-loop learning in
deployment in Algorithm 1.

4.4 Implementation Details
For the robot policy (see Fig. 4), we adopt BC-RNN (Man-
dlekar et al. 2021a), the state-of-the-art behavioral cloning
algorithm, as our model backbone. We use ResNet-18
encoders (He et al. 2016) to encode third person and eye-
in-hand images (Mandlekar et al. 2021a, 2020b). We con-
catenate image features with robot proprioceptive state as
input to the policy. The network outputs a Gaussian Mixture
Model (GMM) distribution over actions. GMM is used to
handle the multimodality of human actions: GMM generates
different modes and creates a probability distribution of the
different modes the actions can take, and therefore is more
flexible and effective than deterministic actions, or a single
gaussian distribution of actions (Chernova and Veloso 2007;
Mandlekar et al. 2021b).

For our intervention-guided weighting scheme, we set
P ∗(intv) = 1

2 . The 50% ratio is adapted from prior work
(Mandlekar et al. 2020c) that increases the weight of
intervention to a reasonable level. We conduct an ablation
study in Section 5 how changing P ∗(intv) affects the
policy performance. We set P ∗(preintv) = 0, essentially
nullifying the impact of pre-intervention samples. The demo
weight maintains the true ratio of demonstration samples
in the dataset: P ∗(demo) = P (demo). Finally, P ∗(robot)
adjusts itself accordingly. Under this new distribution, we
implicitly decrease the proportion of the robot class (see
Fig. 3) due to increasing the proportion of the intv class.
Note that the ratio of the demonstration remains unchanged
as they are still important and useful samples to learn from,
especially during initial rounds of updates when the robot
generates lower-quality data. This is in contrast to IWR by
Mandlekar et al. (Mandlekar et al. 2020c), which treats all
non-intervention samples as a single class, thus lowering
the contribution of demonstrations from their unweighted
ratio. The weight for each individual sample is w(s, a, c) =
P ∗(c)/P (c), as discussed in Section 4.2.
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Figure 5. Human Robot Teaming. Left: The robot executes
the task by default while a human supervises the execution.
Right: When the human detects undesirable robot behavior, the
human intervenes.

We set a segment of length ℓ before each human
intervention as the class preintv. The optimal choice on
the hyperparameter ℓ depends on the human reaction time,
which quantifies how fast the human operator reacted to the
robot’s undesired behavior. Prior works (Stiber et al. 2022;
Spencer et al. 2020) indicate that a response delay exists
between the time the robot starts to perform mistakes and the
time human actually perform corrective interventions. Our
empirical observation based on our human operator shows an
average reaction time of 2 seconds, roughly corresponding to
the time of 15 robot actions. We thus set ℓ = 15.

5 Experiments
In our experiments, we seek to answer the following
research questions: 1) How effective is Sirius in improving
autonomous robot policy performance over time? 2) Can this
system reduce human workload over time? 3) How do the
individual design choices in our learning algorithm affect
overall performance? and 4) Which memory management
strategy is most effective for learning with constrained
memory storage?

5.1 Human-Robot Teaming
We illustrate the actual human-robot teaming process during
human-in-the-loop deployment in Figure 5. The robot
executes a task (e.g., gear insertion) by default while a human
supervises the execution. In this gear insertion scenario,
the expected robot behavior is to pick up the gear and
insert it down the gear shaft. When the human detects
undesirable robot behavior (e.g., gear getting stuck), the
human intervenes by taking over control of the robot. The
human directly passes in action commands to perform the
desired behavior. When the human judges that the robot can
continue the task, the human passes control back to the robot.

To enable effective shared human control of the robot,
we seek a teleoperation interface that (1) enables humans to
control the robot effectively and intuitively and (2) switches
between robot and human control immediately once the
human decides to intervene or pass the control back to
the robot. To this end, we employ SpaceMouse1 control.
The human operator controls a 6-DoF SpaceMouse and
passes the position and orientation of the SpaceMouse as
action commands. The user can pause when monitoring the
computer screen by pressing a button, exert control until the
robot is back to an acceptable state, and pass the control back
to the robot by stopping the motion on the SpaceMouse.

5.2 Tasks
We design a set of simulated and real-world tasks that
resemble common industrial tasks in manufacturing and
logistics. We consider long-horizon tasks that require precise
contact-rich manipulation, necessitating human guidance.
For all tasks, we use a Franka Emika Panda robot arm
equipped with a parallel jaw gripper. Both the agent and
human control the robot in task space. We use a SpaceMouse
as the human interface device to intervene.

We systematically evaluate the performance of our method
and baselines in the robosuite simulator (Zhu et al. 2020). We
choose the two most challenging contact-rich manipulation
tasks in the robomimic benchmark (Mandlekar et al. 2021a):

Nut Assembly. The robot picks up a square nut from the
table and inserts the nut into a column.

Tool Hang. The robot picks up a hook piece and inserts
it into a very small hole, then hangs a wrench on the hook.
As noted in robomimic (Mandlekar et al. 2021a), this is a
difficult task requiring precise and dexterous control.

In the real world, we design two tasks representative of
industrial assembly and food packaging applications:

Gear Insertion. The robot picks up two gears on the NIST
board and inserts each of them onto the gear shafts.

Coffee Pod Packing. The robot opens a drawer, places a
coffee pod into the pod holder, and closes the drawer.

5.3 Baselines
We compare our method with the state-of-the-art human-in-
the-loop learning method for robot manipulation, Interven-
tion Weighted Regression (IWR) (Mandlekar et al. 2020c).
Furthermore, to ablate the impacts of algorithms versus data
distributions, we compare the state-of-the-art imitation learn-
ing algorithm BC-RNN (Mandlekar et al. 2021a) and offline
RL algorithm Implicit Q-Learning (IQL) (Kostrikov et al.
2021). We run these two latter baselines on the deployment
data generated by our method for a fair comparison.

Our codebase is based on robomimic (Mandlekar et al.
2021a), a recent open-source project that benchmarks
a range of learning algorithms on offline data. We
standardize all methods with the same state-of-the-art policy
architectures and hyperparameters from robomimic. The
architectural design includes ResNet-18 image encoders,
random cropping for image augmentation, GMM head, and
the same training procedures. The list of hyperparameter
choices is presented in Table 1. For all BC-related methods,
including Ours, IWR, and BC-RNN, we use the same BC-
RNN architecture specified in Table 2.

For IQL (Kostrikov et al. 2021), we reimplemented the
method in our robomimic-based codebase to keep the policy
backbone and common architecture the same across all
methods. Our implementation is based on the publicly
available PyTorch implementation of IQL2.

We follow the paper’s original design with some slight
modifications. In particular, the original IQL uses the sparse
reward setting where the reward is based on task success.
We add a denser reward for IQL to incorporate information
on human intervention. To mimic the intervention-guided
weights for IQL, we use the following rewards: r = 1.0 upon
task success, r = 0.25 for intervention states, r = −0.25 for
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Figure 6. Quantitative evaluations. We compare our method with human-in-the-loop learning, imitation learning, and offline
reinforcement learning baselines. Our results in simulated and real-world tasks show steady performance improvements of the
autonomous policies over rounds. Our model reports the highest performance in all four tasks after three rounds of deployments
and policy updates. Solid line: human-in-the-loop; dashed line: offline learning on data from our method.

Figure 7. (Left) Ablation on intervention ratio weight. We
show how policy performance first increase then decrease as
P ∗(intv) increases, pearking at P ∗(intv) = 0.5. (Right)
Ablation on weight function design. Our results show that
removing each class label hurts model performance.

Table 1. Common hyperparameters

Hyperparameter Value

GMM number of modes 5
Image encoder ResNet-18

Random crop ratio 90% of image height

Optimizer Adam
Batch size 16

# Training steps per epoch 500
# Total training epochs 1000

Evaluation interval (in epoch) 50

pre-intervention states, and r = 0 for all other states. We
found that this version of IQL outperforms the default sparse
reward setting. Note that in contrast to our method, IQL
requires additional information on task rewards, which may
be expensive to obtain in real-world settings. We list the
hyperparameters for IQL baseline in Table 3.

Table 2. BC backbone hyperparameters

Hyperparameter Value

RNN hidden dim 1000
RNN sequence length 10

# of LSTM layers 2
Learning rate 1e−4

Table 3. IQL hyperparameters

Hyperparameter Value

Reward scale 1.0
Termination false

Discount factor r 0.99
Beta β 1.0

Adv filter exponential
V function quantile 0.75

Actor lr 1e−4
Actor lr decay factor 0.1

Actor mlp layers [1024, 1024]

Critic lr 1e−4
Critic lr decay factor 0.1

Critic mlp layers [1024, 1024]

5.4 Evaluation Protocol

To provide a fair comparison with existing human-in-
the-loop methods, we follow the round update protocol
established by prior work (Mandlekar et al. 2020c; Kelly
et al. 2019): three rounds of policy learning and deployment,
where each round of deployment runs until the number of
intervention samples reaches one third of the initial human
demonstration samples. The motivation for this protocol is
to ensure that the total amount of intervention data across
all rounds matches the demonstration data, allowing us to
evaluate the ability to learn from the same amount of human
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interventions across different human-in-the-loop baselines.
We benchmark human-in-the-loop deployment systems in
two aspects: 1) Policy Performance. Our human-robot
team achieves a reliable task success of 100%. Here we
evaluate the success rate of the autonomous policy after
each round of model update; and 2) Human Workload. We
measure human workload as the percentage of intervention
in the trajectories in each round. While we acknowledge
that human workload is a complex domain that can benefit
from qualitative metrics such as the NASA-TLX (Task Load
Index) (Hart and Staveland 1988), our current evaluation
follows the convention of prior human-in-the-loop literature
by focusing on quantitative measures (Hoque et al. 2021;
Li et al. 2022; Hoque et al. 2022). A comprehensive
study using these advanced methodologies could be done in
future research. We perform rigorous evaluations of policy
performance as follows:

• Simulation experiments: We evaluate the success rate
of each method across 3 seeds. For each seed, we
evaluate the success rate at a set of regularly spaced
training checkpoints and record the average over the
top three performing checkpoints to avoid outliers.
For each checkpoint, we evaluate whether the agent
successfully completed the task over 100 trials.

• Real-world experiments: We evaluate each method for
one seed due to the high time cost for real robot
evaluation. Since real robot evaluations are subject
to noise and variation across checkpoints, we first
perform an initial evaluation of different checkpoints
(5 checkpoints) for each method, evaluating each of
them for a small number of trials (5 trials). For
the checkpoint that gives the best initial quantitative
behavior, we perform 32 trials and report the success
rate over them.

5.5 Experiment Results
Quantitative Results. We show in Fig. 6 that our method
significantly outperforms the baselines on our evaluation
tasks. Our method consistently outperforms IWR over
the rounds. We attribute this difference to our fine-
grained weighting scheme, enabling the method to better
differentiate high-quality and suboptimal samples. This
advantage over IWR cascades across the rounds, as we obtain
a better policy, which in turn yields better deployment data.

We also show that our method significantly outperforms
the BC-RNN and IQL baselines under the same dataset
distribution. This highlights the importance of our weighting
scheme — BC-RNN performs poorly due to copying the
suboptimal behaviors in the dataset, while IQL fails to learn
values as weights that yield effective policy performance.

Ablation Studies. We perform an ablation study to
examine the contribution of each component in our
weighting scheme in Fig. 7 (Right). We study how removing
each class, i.e., treating each class as the robot action class
(and thus removing the special weight for that class), affects
the policy performance:

• remove demo class: not preserving the true ratio of
demo class, which lowers its contribution (see 4.4).

• remove intv class: not upweighting the intv class,
which is equivalent to (min) in Fig. 7 (Left).

Figure 8. Ablation on memory management strategies. We
study the five different strategies introduced in Section 4.3. LFI
(discarding least frequently intervened trajectories) matches
and even yields better performance over keeping all data
samples (Base) while taking much less memory storage.

Figure 9. Human Intervention Sample Ratio. We evaluate
the human intervention sample ratio for the four tasks. The
human intervention sample ratio decreases over deployment
round updates. Our methods have a larger reduction in human
intervention ratio as compared with IWR.

• remove preintv class: not downweighting the
preintv class but treating it as robot class.

We run each ablated version of our method on Round 1
data for the simulation tasks. We choose Round 1 data for
this study because they are generated from the initial BC-
RNN policy rather than biased toward data generated from
our method. As shown in Fig. 7 (Right), removing any
class weight hurts the policy performance. This shows the
effectiveness of our fine-grained weighting scheme, where
each class contributes differently to the learning of the
deployment data.

We also conduct an in-depth study on the influence of
human intervention reweighting ratio P ∗(intv). In the
unweighted distribution, the human intervention samples
take up a small proportion of the dataset size, which we
denote as the minimum ratio; the maximum ratio it can take
is to nullify the proportion of robot samples altogether (so
that the dataset only constitutes human demonstrations and
human interventions). We run our method with a different
ratio ranging from minimum to maximum using Round 1
data on both simulation tasks. The specific range for Nut
Assembly and Tool Hang can be found in Fig. 7 (Left).
The overall trend is that the policy performance peaks at
P ∗(intv) = 0.5, and is worse when P ∗(intv) gets larger
or smaller. Our intuition is that if the intervention ratio is
too small, we are not making the best use of the intervention
samples; if it is too large, it will limit the diversity of training
data. Either way has an adversarial effect.
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Round 0

Round 3

Robot
Action

Intervention

Task Execution at Deployment

Intervention Distribution

Figure 10. Human Intervention Distribution. The two color
bars represent the time duration over 10 consecutive
trajectories and whether each step is autonomous robot action
(yellow) or human intervention (green). In Round 1, much
human intervention is needed to handle difficult situations. In
Round 3, the policy needs very little human intervention, and
the robot can run autonomously most of the time.

Analysis on Memory Management. We compare
the effectiveness of Memory Management strategies in
Section 4.3 at deployment. Fig. 8 shows the result of memory
size reduction on the two simulation tasks in Round 3, where
the Nut Assembly accumulated 3000+ trajectories and the
Tool Hang task 1600+ trajectories. By capping our memory
buffer size at 500 trajectories, we manage to reduce memory
size to a much small proportion of the original dataset size
(15% for Nut Assembly and 30% for Tool Hang).

Among all of the strategies, LFI (discarding least
frequently intervened trajectories) is the only strategy that
matches and even yields better performance over keeping
all data samples (Base). In addition to minimizing storage
requirements, LFI also improves learning efficiency. Under
LFI, the policy converged twice as fast as Base for both
tasks (where we define convergence as the number of
epochs to reach 90% success rate). The faster convergence
speed, in turn, yields faster model iterations in real-world
deployments.

There are a number of potential explanations for the
superior performance of LFI. First, note that among all of
the strategies, LFI preserves the largest number of human
intervention samples. This suggests that human interventions
have high intrinsic value to our learning algorithm, as they
help to ensure robust policy execution under suboptimal
scenarios. Another perspective is that LFI preserves the
more frequently intervened trajectories, which exhibit wider
state coverage and a diverse array of events. This facilitates
the trained policies to operate effectively under rare and
unexpected scenarios. MFI (discarding most intervened
trajectories) has the opposite effect, favoring trajectories
that require less human supervision and often exhibit less
diverse behaviors. The results on FIFO and FILO suggest
that managing samples according to deployment time is not
the most effective strategy, as valuable training data can
be collected all throughout the deployment of the system.
Finally, the naı̈ve Uniform strategy is ineffective as it does
not incorporate any distinguishing characteristics of samples
to manage the memory.

Human Workload Reduction. Lastly, we highlight the
effectiveness of our method in reducing human workload.
In Fig. 9, we plot the human intervention sample ratio for
every round, i.e., the percentage of intervention samples in

11 5 8 7 12 9 10 4 1 6 2 3
Participant Index

0
20
40
60
80

100

Su
cc

es
s R

at
e 

(%
)

42.9 40.8 37.3 35.0 34.2 29.4 27.9 19.4 18.8 17.7 17.3 14.0

Learning from Demonstration

Figure 11. Learning from Single-Human Demonstration.
There are large variations in policy performance when the
dataset is the demonstrations from a single human source.
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Figure 12. Policy performance from the mixed multi-human
demonstration dataset (Round 0), across different dataset sizes.

all samples per round. We compare the results for the HITL
methods, Ours and IWR. We see that the human intervention
ratio decreases over rounds for both methods, as policy
performance increases over time. Furthermore, we see that
this reduction in human workload is greater for our method
compared to IWR.

Qualitatively, we visualize how the division of work of
the human-robot team evolves in Figure 10. For the Gear
Insertion task, we do 10 trials of task execution in sequence
for our method in Round 0 and Round 3, respectively, and
record the time duration for human intervention needed
during the deployment. Comparing Round 0 and Round 3,
the policy in Round 3 needs very little human intervention,
and the intervention duration is also much shorter. This
serves as a qualitative illustration of the changing human-
robot dynamics within our framework, visualizing the
changing nature of human-in-the-loop deployment.

6 Multi-Human Sirius
Real-world deployment scenarios often require multiple
human operators to manage a fleet of robots. Different
humans vary in their individual skills, familiarity with the
system, and level of risk tolerance, which could potentially
influence the intervention behavior. To address this
variability, we study Sirius’s human-in-the-loop deployment
in the multi-human setting. To this end, we conduct a
comprehensive human study involving 12 participants, who
engaged in both human demonstrations and intervention data
collection under the Sirius framework. The research goal is
to analyze the distribution and characteristics of multi-human
data, and to assess its impact on the learning algorithm’s
performance in diverse multi-human real-world scenarios.

Participants and Procedures. For our user studies, we
selected a diverse group of 12 university students, aiming
to encompass a range of experiences and backgrounds. This
group included 8 males and 4 females, aged between 19-26
years, with an average age of 23.3. Half of the participants
were PhD students, and 7 out of the 12 worked in fields
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related to robotics. To ensure a broad representation of skill
levels, only 4 of the 12 participants had prior experience
in teleoperating robots. We adhered to the IRB protocol
approved by the university for all our human studies.

We asked each participant to perform 50 human
demonstration and 150 intervention rollouts in the simulated
Nut Assembly environment. Each participant was informed
about the task goal, practices teleoperation for around 10
minutes before starting the actual experiment, regardless of
their prior teleoperation background.

6.1 Learning from Initial Human
Demonstrations

To better understand multi-human intervention in Sirius,
we start by analyzing human demonstrations without robot
interaction. This approach allows us to observe how different
levels of operator expertise influence the behavioral learning
process. In this section, we seek to answer the following
research questions:

• How does the different individual human expertise
affect the policy performance for learning from
demonstrations?

• How does data diversity (in terms of human operator
skill expertise) affect policy performance?

Experiment Results. First, we present the multi-
human data quality distribution, measured by the policy
performance of learning from the human demonstration
dataset (50 trajectories) of each single person. We show the
distribution of policy success rate in Figure 11. We see that
this group has large variance of demonstration performance,
with maximum success rate = 42.9% and minimum success
rate = 14.0%. The considerable variation in performance
highlights the need for human-in-the-loop algorithms to
be robust, effectively accommodating and learning from
a diverse array of human behaviors and decision-making
patterns.

Table 4. Statistics of the Demonstration Dataset: A summary of
key measures for each individual’s average demonstration
trajectory length.

Statistic Average Trajectory Length

Mean 201.23

Standard Deviation 52.69

Max 302.48

Min 128.60

We also calculate the average trajectory lengths of each
human operator’s demonstration dataset in Table 4. The
group demonstrates large variance in the average trajectory
lengths, showing high variance in skills and demonstration
habits. The disparity in trajectory lengths can be attributed to
several factors. Operators with more expertise or familiarity
with the task may complete trajectories more efficiently,
resulting in shorter average lengths. On the other hand,
less experienced operators may follow longer routes, exhibit
more indecision in their actions, and make more errors with
subsequent corrections, resulting in longer average trajectory
lengths.
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Figure 13. Sirius outperforms BC-RNN and IWR baselines for
multi-human deployment dataset over one round (Round 0 +
Round 1).
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Figure 14. Learning from Single-Human Intervention. There
are large variations in policy performance when the dataset is
one round of deployment data from a single human source.

We also show results of performing behavioral cloning
on the mixed multi-human dataset. We show results of
using 50, 200, 400 and 600 demonstrations (sampling
around 8%, 33%, 67% and 100% trajectories from each
individual human dataset respectively) in Figure 12. First,
we demonstrate that the multi-human dataset is effective
for the purpose of BC, with the learning performance
progressively improving as the volume of data increases.
Additionally, for the case with 50 demonstrations, we
observe that the mixed dataset yields a moderate policy
performance in success rate (29.2%) when compared to
the performance of policies trained on each individual’s
demonstrations (shown in Figure 11). Learning from mixed
quality dataset is worse than learning from highest quality
dataset from the most skilled human operator, which could
potentially be attributed to two factors. Firstly, although the
heterogeneity offers more diverse approaches and strategies
for task completion, potentially enhancing generalization,
the diversity of the data leads to multimodality, which
has been known to hurt BC performance (Shafiullah et al.
2022; Gandhi et al. 2022b). Second, a more diverse
dataset also incorporates demonstrations of lower quality.
These suboptimal demonstrations potentially add noise and
introduce less effective strategies into the learning process.

6.2 Human-in-the-loop Deployment
In this section, we evaluate the multi-human Sirius setting
where multiple humans interact with robots, providing
interventions. We seek to answer the following research
questions:

• Is the Sirius deployment framework and learning
algorithm still effective for a multi-human setting?

• How does different individual human expertise
affect the policy performance for human-in-the-loop
deployment?
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• How does data diversity (in terms of human operator
skill expertise) affect policy performance?

Experiment Results. We combine the demonstration data
from Round 0 and intervention data from Round 1 as
the multi-human Sirius dataset. We run three algorithms:
Sirius, IWR and BC-RNN on the multi-human dataset
to evaluate the Sirius algorithm’s effectiveness. Figure 13
shows the policy performance at Round 1 of deployment,
where Sirius outperforms the other two baselines. The results
suggest that Sirius is well-suited to multi-human settings,
where the data is more diverse, and appears less prone to
overfitting to a single human operator. The reason why Sirius
performs better, as we hypothesised, could be attributed to
its intervention-based reweighting scheme. This approach
allows us to capture the common principles of human-robot
interaction, independent of the variability in specific human
behaviors. By leveraging this scheme, Sirius can generalize
better across different human operators, making it robust in
more diverse and realistic multi-human environments.

Influence of Varied Human Expertise on Learning
from Interventions: Does the level of skill and experience of
individual human operators play a critical role in the policy
learning process when it involves human interventions?
This inquiry seeks to understand how the distinct abilities
of each operator affect the performance of collaborative
human-robot learning systems. To study this problem,
we evaluate the policy performance of learning from
each individual intervention dataset from Round 0 +
Round 1 (50 demonstration trajectories + 150 intervention
trajectories), each run from a single human operator. Figure
14 shows the variance in policy performance for each single
human operator, with maximum success rate = 72.7% and
minimum success rate = 44.8%, showing that the difference
in individual skills contributes significantly to policy
learning. We also show the statistics of the intervention
dataset in Table 5. In contrast to the demonstration
trajectories, the intervention trajectories exhibit a lower mean
and smaller standard deviation. This difference is likely due
to the presence of a robot policy that handles the majority
of tasks, with human variation primarily occurring in the
decision of when and how long to intervene.

Additionally, we utilize the Intervention Sample Ratio in
Section 5 to measure the fraction of timesteps completed by
humans in comparison to the total number of timesteps. This
metric shows the various extent of human involvement in the
process. We also define and include two other key metrics:
the Average Intervention Length and the Average Number
of Interventions per Trajectory. The Average Intervention
Length quantifies the average duration of each human
intervention, showing how long humans typically engage in
the task during an intervention before giving control back to
the robot. Meanwhile, the Average Number of Interventions
per Trajectory indicates how frequently humans intervene in
a single trajectory. As shown in Table 5, the considerable
variability in the three metrics highlights that different
individuals exhibit unique patterns of intervention, both in
terms of frequency and duration.

Impact of Data Diversity on Policy Performance:
This study aims to determine if policy learning outcomes
significantly vary between a dataset sourced from a larger,

60
70
80
90

100

Su
cc

es
s R

at
e 

(%
) Three Groups Results

Best Medium Max Diversity Worse

92.3 88.1 86.9

66

Figure 15. Impact of Data Diversity on Policy Performance.
We compare the performance of the most diverse sampled
dataset against the three more homogeneous subgroups with
33.3% of the data.

more diverse pool of individuals and a dataset that is less
diverse, sourced from fewer individuals and thus more
consistent. Participants are divided into 3 sub-groups based
on their individual policy performance, creating 3 sub-groups
of datasets: Best, Medium and Worse. Additionally, we
create another dataset that is more diverse by collecting
samples from every participant. We ensure that the combined
number of trajectories matches those in the 3 sub-groups
of datasets. We compare the policy performance of learning
from this more diverse dataset with the 3 homogeneous sub-
groups. Figure 15 illustrates that when utilizing the most
diverse dataset (Max Diversity), there is a noticeable decline
in policy performance compared to the results achieved
with the best consistent group (Best). Nonetheless, the
enhancement in data diversity does not lead to performance
dropping below that of the Worse group. This indicates that
the quality of individual datasets plays a more crucial role
than diversity alone in determining overall effectiveness.

7 Conclusion

We introduce Sirius, a framework for human-in-the-loop
robot manipulation and learning at deployment that both
guarantees reliable task execution and also improves
autonomous policy performance over time. We utilize the
properties and assumptions of human-robot collaboration to
develop an intervention-based weighted behavioral cloning
method for effectively using deployment data. We also
design a practical system that trains and deploys new models
continuously under memory constraints. For future work,
we would like to improve the flexibility and adaptability
of the human-robot shared autonomy, including more
intuitive control interfaces and faster policy learning from
human feedback. Another direction for future research is
to alleviate the human cognitive burden of monitoring and
teleoperating the system. To ensure trustworthy execution,
our current system still requires the human to constantly
monitor the robot. Developing deployment monitoring
mechanism would allow the system to automatically
detect robot errors without constant human supervision.
Lastly, to study human workload reduction, we employed
a simple way of measuring human workload based on
the intervention percentage. Conducting qualitative human
studies to measure human mental workload would provide
deeper insights.
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Table 5. Statistics of the Intervention Dataset: A summary of key measures for each individual’s average intervention rollout
trajectory length, intervention ratio, average intervention length and average number of interventions per trajectory.

Statistic Average Trajectory Intervention Average Intervention Average Number of
Length Sample Ratio Length Interventions per Trajectory

Mean 185.84 0.32 15.28 2.80

Standard Deviation 19.34 0.11 4.70 1.03

Max 216.19 0.57 23.67 5.15

Min 161.88 0.19 7.09 1.79
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